EEERRcSEE ol ERIR e LAt nunnn v

Functions and Modularity In
C++

Exploring the principles of creating structured and reusable code

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Why Functions?

Problem
A _— Large programs are difficult to read, maintain, and debug. Code
SIS 2B T, Clm P duplicati
Soy- i ; : % iy plication leads to errors.

Solution

Functions and the principle of modularity help break down complex
tasks into simple parts.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

C++ Function Structure

C+ C+ + C+ function . .
& return_type function_name(parameter_list) {
> // function body
+ 7N solia _ + return value; // (if return_type != void)
4 . !
4 can = this worlkn) -
4 o1 02
cx+x mant —_—x
N, S¢1psH An) Return Type Function Name
. +
— - 4+ Indicates the data type the function Unique identifier for calling the
returns (int, double, void, etc.) function

& (+tz flon) wfm 03

e
)

Parameter List

Input data that the function accepts to perform its operations

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Function Example in Action

#include |
using namespace std; '
int square(int x) { o
return x * x; i 4
} 1
int main() { '/// -
cout << "Square of 5=" /*”; —
<< square(5) << endl; i It s .
return 0O; . ———
) e R
' L 4

Result: Square of 5=25

The square function takes an integer and returns its square.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

C++

Declaration vs Definition

Function Prototype (Declaration)

int sum(int a, int b); // declaration

Informs the compiler about the function's existence

Function Definition

int sum(int a, int b) { // definition
return a + b;

}

Contains the implementation of the function

C Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Parameter Passing Methods

By Value (copy)

| void increment(int x) {
x++; // only the copy is changed
}

By Reference (&)

2 void increment(int &x) {
x++; // the original variable is changed

}

By Pointer (*)

3 void increment(int *x) {
(*x)++; // working via address

}

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Recursive Functions

A function can call itself to solve sub-problems

Base Case

[

Condition for stopping recursion

J
|

—

,w
|

if (n<=1) return 1;

e

Recursive Case

The function calls itself

return n * factorial(n - 1);

Example: Calculating the factorial of a number

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Modular Code Organization

[B math_utils.h < / > math_utils.cpp D main.cpp
Header file contains function Source file contains function Main program uses functions by
declarations and include guards implementations including the header

C Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Key Principles

Functions - the basis of structuring

Break down complex tasks into simple functions

Choose the correct way to pass arguments

By value for simple types, by reference for modification

Apply modularity

Separate code into header and source files

https://gamma.app/?utm_source=made-with-gamma

!
i 1il
: H If |
1t I

‘ :}1 i i
‘i l
|
i BRI =
)

1

f —
-
/.
i

5
1

l-.a--__...___..__. {

J / H e

Review Questions

— 00— —0——0—

What is the difference When should parameters be What advantages does
between a function passed by reference? modular code organization
offer?

declaration and definition?

Ready for practical exercises? Let's create functions for working with arrays and mathematical calculations!

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

