
Functions and Modularity in
C++
Exploring the principles of creating structured and reusable code

https://gamma.app/?utm_source=made-with-gamma

Why Functions?

Problem

Large programs are difficult to read, maintain, and debug. Code
duplication leads to errors.

Solution

Functions and the principle of modularity help break down complex
tasks into simple parts.

https://gamma.app/?utm_source=made-with-gamma

C++ Function Structure

return_type function_name(parameter_list) {
 // function body
 return value; // (if return_type != void)
}

01

Return Type

Indicates the data type the function
returns (int, double, void, etc.)

02

Function Name

Unique identifier for calling the
function

03

Parameter List

Input data that the function accepts to perform its operations

https://gamma.app/?utm_source=made-with-gamma

Function Example in Action

#include
using namespace std;

int square(int x) {
 return x * x;
}

int main() {
 cout << "Square of 5 = "
 << square(5) << endl;
 return 0;
}

Result: Square of 5 = 25

The square function takes an integer and returns its square.

https://gamma.app/?utm_source=made-with-gamma

Declaration vs Definition

int sum(int a, int b); // declaration

Function Prototype (Declaration)

Informs the compiler about the function's existence

int sum(int a, int b) { // definition
 return a + b;
}

Function Definition

Contains the implementation of the function

https://gamma.app/?utm_source=made-with-gamma

Parameter Passing Methods

void increment(int x) {
 x++; // only the copy is changed
}

1

By Value (copy)

void increment(int &x) {
 x++; // the original variable is changed
}

2

By Reference (&)

void increment(int *x) {
 (*x)++; // working via address
}

3

By Pointer (*)

https://gamma.app/?utm_source=made-with-gamma

Recursive Functions
A function can call itself to solve sub-problems

if (n <= 1) return 1;

Base Case

Condition for stopping recursion

return n * factorial(n - 1);

Recursive Case

The function calls itself

Example: Calculating the factorial of a number

https://gamma.app/?utm_source=made-with-gamma

Modular Code Organization

math_utils.h

Header file contains function
declarations and include guards

math_utils.cpp

Source file contains function
implementations

main.cpp

Main program uses functions by
including the header

https://gamma.app/?utm_source=made-with-gamma

Key Principles
Functions 3 the basis of structuring

Break down complex tasks into simple functions

Choose the correct way to pass arguments

By value for simple types, by reference for modification

Apply modularity

Separate code into header and source files

https://gamma.app/?utm_source=made-with-gamma

Review Questions

1

What is the difference
between a function
declaration and definition?

2

When should parameters be
passed by reference?

3

What advantages does
modular code organization
offer?

Ready for practical exercises? Let's create functions for working with arrays and mathematical calculations!

https://gamma.app/?utm_source=made-with-gamma

